Bicarbonate-induced redox tuning in Photosystem II for regulation and protection.

نویسندگان

  • Katharina Brinkert
  • Sven De Causmaecker
  • Anja Krieger-Liszkay
  • Andrea Fantuzzi
  • A William Rutherford
چکیده

The midpoint potential (Em) of [Formula: see text], the one-electron acceptor quinone of Photosystem II (PSII), provides the thermodynamic reference for calibrating PSII bioenergetics. Uncertainty exists in the literature, with two values differing by ∼80 mV. Here, we have resolved this discrepancy by using spectroelectrochemistry on plant PSII-enriched membranes. Removal of bicarbonate (HCO3-) shifts the Em from ∼-145 mV to -70 mV. The higher values reported earlier are attributed to the loss of HCO3- during the titrations (pH 6.5, stirred under argon gassing). These findings mean that HCO3- binds less strongly when QA-• is present. Light-induced QA-• formation triggered HCO3- loss as manifest by the slowed electron transfer and the upshift in the Em of QA HCO3--depleted PSII also showed diminished light-induced 1O2 formation. This finding is consistent with a model in which the increase in the Em of [Formula: see text] promotes safe, direct [Formula: see text] charge recombination at the expense of the damaging back-reaction route that involves chlorophyll triplet-mediated 1O2 formation [Johnson GN, et al. (1995) Biochim Biophys Acta 1229:202-207]. These findings provide a redox tuning mechanism, in which the interdependence of the redox state of QA and the binding by HCO3- regulates and protects PSII. The potential for a sink (CO2) to source (PSII) feedback mechanism is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomimetic Model Studies Reveal the Role of the Ca Ion in Photosystem II Redox-inactive metal ions play crucial roles in tuning the reactivity of oxygen-containing metal complexes and metalloenzymes such as the oxygen-evolving complex (OEC) in photosystem II (PSII)

Redox-inactive metal ions play crucial roles in tuning the reactivity of oxygen-containing metal complexes and metalloenzymes such as the oxygen-evolving complex (OEC) in photosystem II (PSII) and its small-molecule mimics. In PSII, a Ca ion is part of the tetrameric Mn cluster, Mn4CaO5, and is integral to the water oxidation catalysis and evolution of oxygen by the OEC. Several different funct...

متن کامل

Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism.

We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light w...

متن کامل

FTIR spectroelectrochemistry combined with a light-induced difference technique: Application to the iron-quinone electron acceptor in photosystem II

Photosystem II (PSII) in plants and cyanobacteria performs light-driven water oxidation to obtain electrons necessary for CO2 fixation. In PSII, a series of electron transfer reactions take place from the Mn4CaO5 cluster, the catalytic site of water oxidation, to a plastoquinone molecule via several redox cofactors. Light-induced Fourier transform infrared (FTIR) difference spectroscopy has bee...

متن کامل

Interaction of Photosystem II Herbicides with Bicarbonate and Formate in Their Effects on Photosynthetic Electron Flow

The reactivation of the Hill reaction in C 0 2-depleted broken chloroplasts by various concen­ trations of bicarbonate was measured in the absence and in the presence o f photosystem II herbicides. It appears that these herbicides decrease the apparent affinity o f the thylakoid membrane for bicarbonate. Different characteristics o f bicarbonate binding were observed in chloroplasts o f triazin...

متن کامل

Transients in chloroplast gene transcription.

Transcriptional regulation of chloroplast genes is demonstrated by Quantitative Polymerase Chain Reaction (qPCR). These genes encode apoproteins of the reaction centres of photosystem I and photosystem II. Their transcription is regulated by changes in wavelength of light selectively absorbed by photosystem I and photosystem II, and therefore by the redox state of an electron carrier located be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 43  شماره 

صفحات  -

تاریخ انتشار 2016